skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Heltai, Luca"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper provides an overview of the new features of the finite element library deal.II, version 9.6. 
    more » « less
    Free, publicly-accessible full text available November 26, 2025
  2. The traditional workflow in continuum mechanics simulations is that a geometry description —for example obtained using Constructive Solid Geometry (CSG) or Computer Aided Design (CAD) tools—forms the input for a mesh generator. The mesh is then used as the sole input for the finite element, finite volume, and finite difference solver, which at this point no longer has access to the original, “underlying” geometry. However, many modern techniques—for example, adaptive mesh refinement and the use of higher order geometry approximation methods—really do need information about the underlying geometry to realize their full potential. We have undertaken an exhaustive study of where typical finite element codes use geometry information, with the goal of determining what information geometry tools would have to provide. Our study shows that nearly all geometry-related needs inside the simulators can be satisfied by just two “primitives”: elementary queries posed by the simulation software to the geometry description. We then show that it is possible to provide these primitives in all of the frequently used ways in which geometries are described in common industrial workflows, and illustrate our solutions using a number of examples. 
    more » « less
  3. Abstract This paper provides an overview of the new features of the finite element library deal.II, version 9.4. 
    more » « less
  4. Abstract This paper provides an overview of the new features of the finite element library deal.II , version 9.5. 
    more » « less
  5. null (Ed.)
    Abstract This paper provides an overview of the new features of the finite element library deal.II, version 9.3. 
    more » « less
  6. Abstract This paper provides an overview of the new features of the finite element library deal.II, version 9.2. 
    more » « less
  7. Abstract This paper provides an overview of the new features of the finite element library deal.II, version 9.1. 
    more » « less